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Figure 1. With monocular video input, HRAvatar reconstructs a high-quality, animatable 3D head avatar that enables realistic relighting
effects and simple material editing.

Abstract

Reconstructing animatable and high-quality 3D head
avatars from monocular videos, especially with realistic
relighting, is a valuable task. However, the limited in-
formation from single-view input, combined with the com-
plex head poses and facial movements, makes this challeng-
ing. Previous methods achieve real-time performance by
combining 3D Gaussian Splatting with a parametric head
model, but the resulting head quality suffers from inaccu-
rate face tracking and limited expressiveness of the defor-
mation model. These methods also fail to produce realistic
effects under novel lighting conditions. To address these is-
sues, we propose HRAvatar, a 3DGS-based method that re-
constructs high-fidelity, relightable 3D head avatars. HRA-
vatar reduces tracking errors through end-to-end optimiza-
tion and better captures individual facial deformations us-
ing learnable blendshapes and learnable linear blend skin-
ning. Additionally, it decomposes head appearance into
several physical properties and incorporates physically-
based shading to account for environmental lighting. Ex-
tensive experiments demonstrate that HRAvatar not only re-
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constructs superior-quality heads but also achieves realistic
visual effects under varying lighting conditions. Video re-
sults and code are available at the project page.

1. Introduction
Creating a 3D head avatar is essential for film, gaming,
immersive meetings, AR/VR, etc. In these applications,
the avatar must meet several requirements: animatable,
real-time, high-quality, and visually realistic. However,
achieving a highly realistic and animatable head avatar from
widely-used monocular video remains challenging.

Research in this area spans many years. Early efforts
[7, 38, 51] develop parametric head models based on 3D
Morphable Models (3DMM) theory [3]. These methods al-
low registering 3D head scans to parametric models for 3D
facial mesh reconstruction. With the rise of deep learning,
methods [10, 17, 44, 81] use parametric model priors to sim-
plify head mesh reconstruction from videos, either through
estimation or frame-wise optimization, i.e., 3D face track-
ing. While these methods generalize well for expressions
and pose variations, their fixed topology limits complex hair
modeling and fine-grained appearance reconstruction. To
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address this issue, some researchers have turned to Neu-
ral Radiance Fields (NeRF) [48] for modeling head avatars
[54, 63, 64, 78]. These approaches enable complete geom-
etry and appearance reconstruction, including hair, glasses,
earrings, etc. However, they are limited by slow rendering
and long training time. Recently, 3D Gaussian Splatting
(3DGS) [32] has gained significant attention for its fast ren-
dering speed. Some methods [15, 57, 62] have extended
3DGS to head avatar reconstruction, significantly improv-
ing rendering speed compared to NeRF-based methods.

Although previous 3DGS-based methods have made
progress in animatability and real-time rendering, their re-
construction quality is constrained by two major factors:
limited deformation flexibility and inaccurate expression
tracking. Additionally, they are unable to produce realis-
tic relighting effects. Specifically, our motivation primarily
stems from the following three points. 1) Head reconstruc-
tion requires a geometric model to deform from the compact
canonical space to various states based on different expres-
sions and poses. Recent methods [57, 62] model geomet-
ric deformations of Gaussian points by rigging them to uni-
versal parametric model mesh faces. However, parametric
models may not accurately capture personalized deforma-
tions. 2) Before training, these methods extract FALME
parameters by fitting pseudo-2D facial keypoints, which are
usually error-prone and lead to suboptimal results. Methods
like PointAvatar [80] try to directly optimize these param-
eters during training. Such a design may introduce a mis-
match from pre-tracked parameters and limit generalization
to new expressions and poses. Consequently, such meth-
ods still require post-optimization during testing. 3) Under
monocular and unknown lighting settings, existing 3DGS-
based methods directly fit the colors of the avatar, causing
an inability to relight and mix the person’s intrinsic appear-
ance with ambient lighting.

To tackle the aforementioned challenges, we propose
HRAvatar, which utilizes 3D Gaussian points for high-
quality head avatar reconstruction with realistic relighting
from monocular videos, as Fig. 1. We propose a learnable
blendshapes and learnable linear blend skinning strategy, al-
lowing the Gaussian points for flexible deformation from
canonical space to pose space. Additionally, we utilize an
expression encoder to extract accurate facial expression pa-
rameters in an end-to-end training manner, which not only
reduces the impact of tracking errors on reconstruction but
also ensures the generalization of expression parameters es-
timation. To achieve realistic and real-time relighting, we
model the head’s appearance by using albedo, roughness,
Fresnel reflectance, etc. with an approximate physically-
based shading model. An albedo pseudo-prior is also em-
ployed to better decouple the albedo. For a detailed com-
parison and distinction from previous methods, please re-
fer to the supporting materials. Benefiting from these tech-

niques, HRAvatar can reconstruct fine-grained and expres-
sive avatars while achieving realistic relighting effects.

In summary: a) We present HRAvatar, a method for
monocular reconstruction of head avatars using 3D Gaus-
sian points. HRAvatar leverages learnable blendshapes and
learnable linear blend skinning for flexible and precise ge-
ometric deformations, with a precise expression encoder
reducing tracking errors for high-quality reconstructions.
b) We incorporate intrinsic priors to model head appear-
ance under unknown lighting conditions. Combined with a
physically-based shading model, we achieve realistic light-
ing effects across different environments. c) Experimen-
tal results demonstrate that HRAvatar outperforms existing
methods in overall quality, enabling realistic relighting in
real-time and simple material editing.

2. Related Work

2.1. 3D Radiance Fields
Image-based 3D reconstruction has become a vibrant re-
search area due to its photorealistic visuals. NeRF [48]
introduced a novel method using MLPs to represent a 3D
scene as a continuous density and color field, enabling
differentiable image rendering through volume rendering.
This approach has inspired numerous follow-up studies [1,
16, 47, 59, 69]. However, NeRF faces heavy computational
challenges due to extensive MLP queries. Instant-NGP [49]
employs multi-resolution hash encoding to accelerate in-
ference. Additionally, some methods, propose hybrid 3D
representations [6, 9, 21] to improve efficiency. Recently,
3DGS introduces an explicit representation using Gaussian
points, achieving real-time rendering with an efficient tile-
based rasterizer. It rapidly gains attention, and researchers
applying it to various fields [11, 12, 28, 35, 53, 60, 70, 71]
to exploit its efficiency. Our work also builds upon 3DGS
to achieve real-time rendering.

2.2. 3D Head Reconstruction
Geometric mesh reconstruction. Traditional 3DMM [3]
uses Principal Component Analysis (PCA) to create a pa-
rameterized facial model that represents appearance and ge-
ometric variations in a linear space. BFM [51] improves
on this by adding more scanned facial data, resulting in
a richer model. FLAME [38] introduces extra joints for
the eyes, jaw, and neck, enabling more realistic facial mo-
tion. DECA [20] builds on FLAME by estimating param-
eters like shape and pose from a single image and captur-
ing finer wrinkles. SMIRK [55] enhances tracking accu-
racy by using an image-to-image module to provide more
precise supervision signals. Besides geometry, some works
[8, 18, 19, 36] also focus on learning intrinsic attributes for
relightable mesh reconstruction from a single image.
Image-based head reconstruction. Recent advances in
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Figure 2. Given a monocular video with unknown lighting and M frames, we first track fixed shape parameter β and pose parameters
{θj}M through iterative optimization before training. Expression parameters {ψj}M and jaw poses θjaw are estimated via an expression
encoder, which is optimized during training. With these parameters, we transform the Gaussian points into pose space using learnable
linear blendshapes BS and linear blend skinning LBS. We then render the Gaussian points to obtain albedo, roughness, reflectance, and
normal maps. Finally, we compute pixel colors using physically-based shading with optimizable environment maps.

neural radiance fields combine 3DMM for view-consistent,
photorealistic 3D head reconstruction, which can be gener-
ally divided into two categories. Multi-view-based meth-
ods. Some studies explore multi-view video-based head
[26, 45, 52, 58, 66] and full-body [39, 41, 42] reconstruc-
tion. However, these approaches require multiple synchro-
nized cameras, making them more complex and less con-
venient than single-phone captures. Although multi-view-
based methods can achieve impressive results, their setup
limits the applicability of these approaches. Monocular-
based methods. NeRFace [23] extends NeRF to dynamic
forms by incorporating expression and pose parameters as
conditional inputs, enabling animatable head reconstruc-
tion. IMavatar [79] models deformation fields for expres-
sion and pose motions, using iterative root-finding to locate
the canonical surface intersection for each pixel. Point-
avatar [80] introduces a novel point-based representation
for more efficient animatable avatars. While Point-avatar
learns person-specific deformation fields through a shared
MLP, our method independently learns per-point blend-
shapes basis and blend weights, leading to a more flexi-
ble deformation modeling. INSTA [82] speeds up train-
ing by using multi-resolution hashing for 3D head repre-
sentation. Recent works [57, 62] based on 3DGS achieve
significant breakthroughs in rendering speed. 3D Gaussian
Blendshapes (GBS) [46] learn Gaussian basis to better han-
dle expression movements but struggle with pose variations.
In contrast, our method utilizes learnable linear blend skin-
ning for flexible point pose transformations, enabling better
handling of person-specific head pose animation, while also
providing realistic relighting effects.

2.3. Neural Relighting
Implementing relighting in reconstructed 3D scenes is dif-
ficult. For static scenes, some methods [24, 65, 74] use
learning-based approaches to learn relightable appearances
from images under varying lighting. In contrast, inverse
rendering methods [4, 72, 75, 76] leverage reflection mod-
els like BRDF for more realistic relighting. Recent works
[25, 29] integrate BRDF into 3DGS and methods Wu et al.
[61], Ye et al. [68] introduce deferred shading for efficient
relighting or specular rendering of static scenes. While sim-
plified physical rendering models can be inaccurate, many
methods [30, 40, 61] add fitting-based rendering branches to
improve reconstruction results. Although some researchers
combine physical reflection models with dynamic radiance
fields to achieve relightable head avatars [37, 56, 67], they
require data under controlled lighting conditions. Recon-
structing relightable 3D head avatars under monocular un-
known lighting is still underexplored. Point-avatar models
lighting but relies on trained shading networks, unable to
flexibly relight through environment maps. Unlike NeRF
or 3DGS, FLARE [2] reconstructs avatars with meshes and
uses a BRDF for relighting, but the reconstruction quality
is limited. Our method not only reconstructs superior head
avatars but also supports realistic and real-time relighting.

3. Method
As mentioned, previous methods for head reconstruction
suffer from inaccurate 3D expression tracking and limited
person-specific deformation. They also cannot achieve re-
alistic relighting effects. To tackle these challenges, we en-
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hance expression tracking through end-to-end optimization
(Sec. 3.1). We also adopt learning strategy for both linear
blendshapes and blend skinning for more flexible deforma-
tion of Gaussian points (Sec. 3.2). Physically-based shading
is employed to realistically model head appearance, which
makes our model achieve realistic relighting (Sec. 3.3). The
overall pipeline is illustrated in Fig. 2.

3.1. Precise Expression Tracking
Although existing face tracking methods can accurately
track head pose and shape parameters, they often struggle
to precisely estimate expression parameters. Since these pa-
rameters control head expressions, inaccuracies can cause
deformation errors, compromising reconstruction quality.
To mitigate this issue while maintaining good generaliza-
tion, we propose to use an expression encoder E to extract
more accurate expression parameters, which is end-to-end
trained with subsequent 3D avatar reconstruction:

ψ, θjaw = E(I), (1)

where ψ and θjaw represent the expression and jaw pose
parameters, respectively. Note that traditional fitting-based
methods optimize face parameters using pseudo labels (e.g.,
pre-estimated 2D landmarks). In contrast, our encoder is
trained end-to-end during reconstruction, utilizing photo-
metric loss with ground-truth face images for supervision.
Hence, the proposed encoder enables more precise expres-
sion tracking and maintains good generalization.

Since point transformations are sensitive to jaw pose pa-
rameters [38], we introduce a regularization loss that con-
strains the distance between the inferred and pre-tracked
jaw poses θ̂jaw:

Ljaw =
∥∥∥θ̂jaw − θjaw

∥∥∥
2
. (2)

Other pose parameters in θ and shape parameters β are pre-
tracked using [79], with β shared across all frames.

3.2. Geometry Deformation Modeling
Like most methods, we employ a deformation model to
map points from canonical space to pose space based on
expression and pose parameters. However, facial shapes,
expressions, and pose deformations vary widely among in-
dividuals, making it difficult for parametric head models to
accurately recover each person’s unique shape and defor-
mations. To address this, we independently learn per-point
blendshapes basis and blend weights adaptively for more
flexible geometric deformation.
Learnable linear blendshapes. Similar to FLAME [38],
we use linear blendshapes to model geometric displace-
ment. For each Gaussian point, we introduce three ad-
ditional attributes: shape basis S = {S1, ..., S|β|} ∈
RN×3×|β|, expression basis E = {E1, ..., E|ψ|} ∈

RN×3×|ψ| and pose basis P = {P 1, ..., P 9K} ∈
RN×3×9K . These are learnable parameters that fit the indi-
vidual head shape and deformations. First, we compute the
shape offset to displace the points to the canonical spaceXc

using shape blendshapes:

BS(β, S) =
|β|∑
m=1

βmSm, Xc = X + BS(β, S), (3)

where BS denotes linear blendshapes and β =
{β1, ..., β|β|} ∈ R|β| is the shape parameter. Next, we com-
pute expression and pose offsets in the same manner, using
expression blendshapes and pose blendshapes to model fa-
cial expressions:

Xe = Xc + BS(ψ,E) + BS(R(θ∗)−R(θ0), P ), (4)

where ψ = {ψ1, ..., ψ|ψ|} ∈ R|ψ| is the expression param-
eter, and θ ∈ R3(K+1) is the pose parameter representing
the axis-angle rotation of the points relative to the joints. θ∗

excludes the global joint, with K = 4. R(θ) is the flattened
rotation matrix vector obtained by Rodrigues’ formula, and
θo represents zero pose.
Learnable linear blend skinning. After applying lin-
ear displacement, we transform Gaussian points into pose
space using Linear Blend Skinning (LBS). Each Gaussian
point is assigned with a learnable blend weight attribute
W ∈ RN×K to accommodate individual pose deforma-
tions. LBS rotates the points Xe around each joints J (β)
and linearly weighted by W , defined as:

Xp = LBS(Xe,J (β),W) = RlbsXe + Tlbs, (5)

where J (β) ∈ RK×3 represents the positions of the neck,
jaw, and eyeball joints. To maintain geometric consistency,
the rotation attributes of the Gaussians are also transformed
by the weighted rotation matrix Rlbs: Rp = RlbsR.
Geometry initialization. To facilitate easier learning, we
leverage FLAME’s geometric and deformation priors. We
initialize the positions of the Gaussian points through lin-
ear interpolation on the FLAME mesh faces. The same
method is applied to initialize the blendshapes basis and
blend weights. Other geometric attributes, like rotation and
scale, are initialized similarly to 3DGS.

3.3. Appearance Modeling
3DGS uses spherical harmonics to model the view-
dependent appearance of each point, but it cannot simu-
late visual effects under new lighting conditions. To over-
come this, we introduce a novel appearance modeling ap-
proach that decomposes the appearance into three proper-
ties: albedo a, roughness o, and Fresnel base reflectance
f0. We then utilize a BRDF model [5] for physically-based
shading of the image. To enhance efficiency, we apply the
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SplitSum approximation technique [31] to precompute the
environment map.
Shading. First, we render the albedo map A, roughness
map O, reflectance map F0, and normal map N using ras-
terizer. The specular and diffuse maps are then calculated
as follows:

Ispecular = Ienv(R,O) · (ks · IBRDF (O,N ·V)[0]

+ IBRDF (O,N ·V)[1]) ,
(6)

Idiffuse = A · Iirr(N), (7)

where V is the view direction map derived from the camera
parameters and R is the reflection direction map, computed
as R = 2(N · V)N − V. IBRDF is a precomputed map
of the simplified BRDF integral. We use an approximate
Fresnel equation F̃ to compute the specular reflectance ks:

ks = F̃(N ·V,O,F0) = F0 + (max (1−O,F0)

−F0) · 2(−5.55473(N·V)−6.698316)·(N·V).
(8)

The final shaded image is computed as: Ishading =
Idiffuse + Ispecular. During training, we optimize two
cube maps: the environment irradiance map Iirr and the
prefiltered environment map Ienv . Ienv(R,O) provides ra-
diance values based on the reflection directions and rough-
ness, while Iirr(N) provides irradiance values based on the
normal directions.
Normal estimation. Smooth and accurate normals are es-
sential for physical rendering, as rough normals can cause
artifacts during relighting. Following Jiang et al. [29], we
use the shortest axis of each Gaussian point as its normal n.
To ensure the correct direction and geometric consistency,
we supervise the rendered normal map N with the normal
map N̂ obtained from depth derivatives:

Lnormal =
∥∥∥1−N · N̂

∥∥∥
1
. (9)

Intrinsic prior. Disentangling material properties under
constant unknown lighting is challenging due to inher-
ent uncertainties. When reconstructing heads under non-
uniform lighting, local lighting effects can be erroneously
coupled into the albedo, resulting in unrealistic relighting.
To address this, we use an existing model [14] to extract
pseudo-ground-truth albedos Agt, supervising the rendered
albedos for a more realistic appearance, as Eq. (10). We also
constrain the roughness and base reflectance within prede-
fined ranges: o ∈ [τomin, τ

o
max], f0 ∈ [τf0min, τ

f0
max].

Lalbedo =
∥∥A−Agt

∥∥
1
. (10)

3.4. Optimization
During optimization, we retain the point densification and
pruning strategy from 3DGS, with additional attributes in-
herited similarly. In addition to the previously mentioned

losses, we use the Mean Absolute Error (MAE) and D-
SSIM to calculate the error between the rendered image
and ground truth, as Eq. (12). We also apply Total Vari-
ation (TV) loss Ltv to the rendered roughness map O to
ensure smoothness. The total loss function is given in
Eq. (11). The weights for each loss component are set as
follows: λjaw = 0.1, λ1 = 0.8, λW = 0.1, λnormal =
10−5, λalbedo = 0.25, λtv = 0.02.

Ltotal = Lrgb + λjawLjaw + λnormalLnormal+
λalbedoLalbedo + λtvLtv(O),

(11)

where Lrgb = λ1 ∥Ishading − Igt∥1 +
(1− λ1)LD−SSIM(Ishading, Igt).

(12)

4. Experiment
4.1. Experimental Setup
Implementation details. We build our model using Py-
Torch [50] and train it with the Adam optimizer [34] on a
single NVIDIA 3090 GPU. Each monocular head video is
trained for 15 epochs. All videos are cropped and resized
to a resolution of 512× 512. We run matting (e.g. [13, 43])
to extract the foreground, setting the background to black.
Moreover, we follow Zheng et al. [79] to pre-track FLAME
parameters for the videos. For our encoder E , we utilize the
pre-trained weight from SMIRK [55].
Dataset. We evaluate different methods on 10 subjects from
the INSTA dataset [82], which provides pre-cropped and
segmented images. Following INSTA, we use the last 350
frames of each video as the test set for self-reenactment
evaluation. For a more robust assessment, we include 8 sub-
jects from the HDTF dataset [77], which is collected from
the internet. We also include 5 self-captured subjects using
a mobile phone. For these two datasets, the last 500 frames
are used as the test set. All methods adopt the same cropped
and segmented process.
Baseline and metrics. We compare our method against
several SOTA methods: Point-avatar [80], INSTA [82],
Splatting-avatar [57], Flash-avatar [62], and 3D Gaussian
Blendshapes (GBS) [46], as well as FLARE [2] for relight-
ing. For each method, we use the official code to gener-
ate the results. Note that we disable the post-training op-
timization of test images’ parameters in Point-avatar to en-
sure fairness. We use PSNR, MAE∗ (MAE × 102), SSIM,
and LPIPS [73] to evaluate the image quality.

4.2. Evaluation
Quantitative results. We evaluate all methods for self-
reenactment, as shown in Tab. 1. Our method outper-
forms others across all four metrics, especially in LPIPS.
This highlights that our method reconstructs more detailed
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Method INSTA dataset HDTF dataset self-captured dataset
PSNR↑ MAE∗↓ SSIM↑ LPIPS↓ PSNR↑ MAE∗↓ SSIM↑ LPIPS↓ PSNR↑ MAE∗↓ SSIM↑ LPIPS↓

INSTA 27.85 1.309 0.9110 0.1047 25.03 2.333 0.8475 0.1614 25.91 1.910 0.8333 0.1833
Point-avatar 26.84 1.549 0.8970 0.0926 25.14 2.236 0.8385 0.1278 25.83 1.692 0.8556 0.1241

Splatting-avatar 28.71 1.200 0.9271 0.0862 26.66 2.01 0.8611 0.1351 26.47 1.711 0.8588 0.1550
Flash-avatar 29.13 1.133 0.9255 0.0719 27.58 1.751 0.8664 0.1095 27.46 1.632 0.8348 0.1456

GBS 29.64 1.020 0.9394 0.0823 27.81 1.601 0.8915 0.1297 28.59 1.331 0.8891 0.1560
HRAvatar (Ours) 30.36 0.845 0.9482 0.0569 28.55 1.373 0.9089 0.0825 28.97 1.123 0.9054 0.1059

Table 1. Average quantitative results on the INSTA, HDTF, and self-captured datasets. Our method outperforms others in PSNR, MAE∗

(MAE × 102), SSIM, and LPIPS metrics.

Ground Truth GBSHRAvatar (Ours) Flash-avatar Splatting-avatar Point-avatar INSTA

Figure 3. Qualitative comparison results on self-reenactment. Compared to others, ours captures finer texture details and renders high-
fidelity images. Ours also achieves more accurate expression deformations and reconstructs better geometric details.

and high-quality animatable avatars, with the improved
LPIPS score suggesting sharper images. Moreover, we test
HRAvatar’s rendering speed for animation and relighting,
achieving about 155 FPS. Further details are in the supple-

mentary material.
Qualitative results. The visual comparison of our method
with baseline methods on self-reenactment is shown in
Fig. 3. INSTA and Splatting-avatar often struggle with chal-
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PSNR↑ MAE∗↓ SSIM↑ LPIPS↓
full (ours) 30.36 0.845 0.9482 0.0569

rigged to FLAME 29.79 0.937 0.9431 0.0695
MLP deform 29.67 0.966 0.941 0.0706

w/o exp. encoder 29.70 0.933 0.9438 0.0667
w/o learnable deform 29.83 0.923 0.9440 0.0684

w/o PBS 30.34 0.850 0.9480 0.0563

Table 2. Ablation quantitative results on the INSTA dataset. Bold
marks the best results, and underline marks the second best results.

lenging poses, resulting in significant artifacts. Point-avatar
maintains decent rendering in such poses but suffers from
point artifacts and lacks detail in the mouth. Flash-avatar
shows improvements but still loses some fine textures and
has expression inaccuracies. GBS achieves relatively accu-
rate facial expressions in normal poses but introduces blur-
ring around edges, like the ears, hair, and neck. In con-
trast, our method accurately restores fine textures, such as
hair and eye luster, while preserving precise geometric de-
tails like ears and teeth. Ours handles wrinkles and blinking
more effectively due to the flexible deformation model and
accurate tracking.

We qualitatively compare the visual differences in re-
lighting between FLARE and our method. As shown in
Fig. 4, FLARE incorrectly reconstructs some of the sub-

Source actor HRAvatar (Ours) GBS Flash-avatar Splatting-avatar Point-avatar

Figure 5. Visual comparison on cross-reenactment. HRAvatar ac-
curately simulates actors’ poses and expressions, preserving tex-
tures and geometric details, while others exhibit artifacts.

ject’s geometric normals, causing blocky artifacts during re-
lighting. In contrast, our method learns smoother normals,
leading to more consistent and realistic lighting effects. Ad-
ditional comparisons with FLARE are provided in the sup-
plementary material.

We also present cross-reenactment visual comparisons.
As shown in Fig. 5, our method better retains the source
actor’s expressions and preserves original head details, even

7



Ground Truth Full (Ours) Rigged to FLAME Without learnable def. Without exp. encoderMLP deform

Figure 6. Qualitative results of the ablation study. Our full method
renders better texture and geometry details and captures more ac-
curate facial expressions, including mouth shapes and blinking.
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Figure 7. Ablation study for albedo and normal losses. Without
Lalbedo, entangled attributes yield unrealistic relighting. Without
Lnormal, chaotic normal maps cause artifacts when relighting.

in challenging poses and expressions, while other methods
exhibit blurring and artifacts. It’s worth noting that Flash-
avatar and GBS treat head poses as camera poses, which
may cause minor scale discrepancies, resulting in variations
in the size and positioning of rendered avatars.

Additionally, the supplementary material includes more
relighting results under rotating environment maps, as well
as material editing and novel view synthesis.

4.3. Ablation Studies
The quantitative results of the ablation study on self-
reenactment are summarized in Tab. 2, with qualitative re-
sults in Fig. 6 and Fig. 7, validating the effectiveness of each
component.
Rigged to FLAME. We replace HRAvatar’s learnable
blendshapes and LBS with the deformation method from
Qian et al. [52], which rigs Gaussian points to the FLAME
mesh. The results in Tab. 2 and Fig. 6 demonstrate that our
model improves on metrics and achieves more accurate tex-
ture and tooth details.
MLP deform. To validate the superiority of independently
learning per-point blendshapes basis and blend weights, we
follow Point-avatar [80] and use a shared MLP to predict

them for each point. The results highlight the advantages of
our learning strategy.
Without learnable deform. We set the blendshapes ba-
sis and blend weights as non-learnable to assess the impor-
tance of adapting to individual deformations. This leads to
reduced geometry and texture quality.
Without exp. encoder. To verify the expression encoder’s
effectiveness in extracting expression parameters, we use
pre-tracked parameters instead. Results indicate our method
better restores facial expressions, including mouth shapes
and blinking, and improves performance metrics.
Without PBS. This means using the standard 3DGS ap-
pearance model instead of our shading model. While the
fitting-based method of 3DGS performs well due to more
learnable parameters and flexibility, our method achieves
comparable results while enabling realistic relighting.
Without Lnormal. As shown in Fig. 7, removing normal
consistency loss results in chaotic normal maps, causing
blocky artifacts during relighting.
Without Lalbedo. Without the albedo prior loss, appearance
attributes become entangled, causing incorrect coupling of
local highlights with albedo. This results in unrealistic re-
lighting effects, with highlights appearing in areas without
actual lighting, as shown in Fig. 7.

5. Discussion

Conclusion. In this paper, we introduce HRAvatar, a novel
method for high-fidelity, relightable 3D head avatar recon-
struction from monocular video. To address errors incorpo-
rated from inaccurate facial expression tracking, we train an
encoder in an end-to-end manner to extract more precise pa-
rameters. We model individual-specific deformations using
learnable blendshapes and linear blend skinning for flexi-
ble Gaussian point deformation. By employing physically-
based shading for appearance modeling, our method en-
ables realistic relighting. Experimental results show that
HRAvatar achieves state-of-the-art quality and real-time re-
alistic relighting effects.
Limitation. While our method models effectively individ-
ual deformations well, it remains constrained by FLAME’s
priors when training data is insufficient, affecting control
over elements like hair or accessories. Due to 3DGS’s
strong texture representation and the limitations of exist-
ing albedo estimation models, some shadows or wrinkles
may still be mis-coupled into albedo or reflectance, leading
to shortcomings in relighting, particularly for specular re-
flections or shadows. Besides, reconstructing the full head
from a monocular video is infeasible for our method with
unknown camera poses, even if the back of the head is vis-
ible. This is because monocular pose estimation relies on
facial key points, which become unreliable when the yaw
angle approaches 90 degrees.
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HRAvatar: High-Quality and Relightable Gaussian Head Avatar

Supplementary Material

Overview
This supplementary material presents more details and ad-
ditional results not included in the main paper due to page
limitation. The list of items included are:
• A brief description of the video results in Appendix A.
• More model implementation details in Appendix B.
• Additional comparison with FLARE and ablation study

in Appendix C.
• Application results for novel view synthesis and material

editing in Appendix D.
• Further discussion on method differences, limitations,

and ethical considerations in Appendix E.

A. Video Demo
We strongly encourage readers to watch the video provided
in the project page. It showcases the self-reenactment ani-
mation of avatars reconstructed by HRAvatar and includes
novel view renderings. The video also illustrates the vi-
sual results of relighting the avatars under various rotating
environment maps and the ability to perform simple mate-
rial editing to enhance specular reflections. Furthermore,
we provide visual comparisons of HRAvatar with two ad-
vanced methods, GBS [46] and Flash-avatar [62], in self-
reenactment, cross-reenactment, and novel view synthesis.
A relighting comparison with FLARE [2] is also included.
Overall, the video highlights our method’s capability to cre-
ate fine-grained avatars with excellent expressiveness and
realistic lighting effects in diverse environments.

B. More Implementation Details
B.1. Preliminary
3D Gaussian Splatting [32] represents 3D scene with ex-
plicit Gaussian points, each point G is defined by its posi-
tion (center) X , rotation r, scaling s, opacity α and color c.
During rendering, each Gaussian point affects nearby pixels
anisotropically using a Gaussian function G:

G(x, µ′,Σ2D) = e−
1
2 (x−µ

′)⊤Σ−1
2D(x−µ′), (13)

where µ′ is the projected mean of X on the image plane.
Given the viewing transformation W , the 2D covariance
matrix Σ2D is derived from the 3D covariance matrix:

Σ2D = JWΣW⊤J⊤, Σ = RSS⊤R⊤. (14)

J is the Jacobian of the affine approximation of the pro-
jective transformation. To ensure the covariance matrix Σ

Rendering Quality Relighting Rendering speed

Point-Avatar [80] 0.646 Limited ≈ 6 FPS
INSTA [82] 0.764 ✗ ≈ 1 FPS
FLARE [2] 0.698 ✓ ≈ 35 FPS

Splatting-avatar [57] 0.834 ✗ > 120 FPS
Flash-avatar [62] 0.883 ✗ > 120 FPS

GBS [46] 0.980 ✗ > 120 FPS
HRAvatar (Ours) 1.184 ✓ > 120 FPS

Table 3. Key aspects of our method compared to previous works.
The rendering quality shows the inverse of the MAE metric on the
INSTA dataset, with longer bars representing better performance.
’Limited’ indicates that the Point-Avatar method has limited flex-
ibility in handling relighting.

remains positive semi-definite during optimization, it is de-
composed into a scaling matrix S and a rotation matrix R,
as Eq. (14). The scaling matrix S and rotation matrix R
are represented by a 3D vector s and a quaternion r, re-
spectively. The color c is modeled by a third-order spheri-
cal harmonic coefficient for view-dependent effects. During
splatting, the image space is divided into multiple 16 × 16
tiles, and pixel colors are computed with alpha blending:

C(xp) =
∑
i∈Gxp

ciσi

i−1∏
j=1

(1− σj), σi = G(xp, µ′
i,Σ2D,i)αi,

(15)
where, xp represents the pixel position, andGxp denotes the
sorted Gaussian points associated with pixel xp. Addition-
ally, a strategy is proposed to adjust the number of Gaussian
points through densification and pruning.

B.2. Training Details
In the first 1500 iterations, we take the albedo map as the
rendered image to learn the head’s albedo properties ini-
tially. Afterward, we switch to shaded image to learn other
attributes. Each Gaussian point’s roughness, Fresnel base
reflectance, and albedo attributes are initialized to 0.9, 0.04,
and 0.5, respectively. While we generally follow 3DGS hy-
perparameters, we make some adjustments. During train-
ing, point densification starts at iteration 1000 and ends at
500 iterations before training completes, with a densifica-
tion interval of 500 iterations. The gradient threshold is in-
creased to 3 × 10−4 to avoid excessive point growth. Dur-
ing training, opacity is reset below the pruning threshold
to eliminate more redundant points. The learning rates for
the Gaussian point positions, appearance attributes, and en-
vironment map gradually decrease as training progresses,
while the expression encoder learning rate is set to 5×10−5.
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Training a video with 2400 frames takes about one hour.
When using albedo prior to supervision, we apply it ev-

ery 3 frames due to the time-consuming process of extract-
ing pseudo-ground-truth albedo during preprocessing. Ad-
ditionally, since the lighting in the INSTA and self-captured
datasets is relatively uniform, we only apply albedo prior
supervision during training on the HDTF dataset. Further-
more, for subjects in the HDTF dataset, we set a higher up-
per bound for reflectance (τf0max) to account for the specific
lighting conditions.

B.3. Model Details
The shape and expression basis in FLAME are derived
through PCA, with higher dimensions having a small ef-
fect on deformation. To avoid unnecessary computations,
we use only the first 100 shape parameters and 50 expres-
sion parameters, i.e., |β| = 100 and |ψ| = 50. Since
FLAME lacks an interior mesh for the mouth, we follow
Qian et al. [52] by adding a mesh for the teeth, where the
upper and lower teeth move according to the neck and jaw
joints, respectively. Additionally, we add extra mesh behind
the teeth to provide a reasonable initialization for the rest of
the mouth interior.

During shading, normal and reflection vectors sample
lighting from the irradiance and pre-filtered environment
maps. Since both maps must be backpropagated and
mipmaps reconstructed in each training iteration, the com-
putation increases with resolution. To maintain efficient
training, we set the irradiance map Iirr resolution to 16×16
and the pre-filtered environment map Ienv to 32 × 32 with
3 mipmap levels.

B.4. BRDF Reflection Model.
For physical-based shading, we use the Disney model [5]
to describe light interactions with geometry and materials,
a method commonly employed in real-time rendering. This
model breaks reflection into two components: Lambertian
diffuse reflection and specular reflection:

Lo(X,ωo) = Ld + Ls =

∫
Ω

a

π
Li(X,ωi)n · ωidωi

+

∫
Ω

DFH
4(n · ωo)(n · ωi)

Li(X,ωi)n · ωidωi,
(16)

whereLi andLo denote the radiance for the incoming direc-
tion ωi and outgoing direction ωo, respectively with n as the
normal. The Lambertian term models diffuse reflection, in-
dependent of viewing direction, allowing us to precompute
and store this part in an irradiance map. The specular reflec-
tion term models appearance based on viewing angle, with
D, F , and H representing the normal distribution, Fresnel
equation, and geometric function. We use the SplitSum ap-
proximation to simplify the BRDF integral into two parts:

Ground Truth HRAvatar (Ours) FLARE

Figure 8. Visual comparison with FLARE on self-reenactment.
Our method captures facial expression details more effectively and
reconstructs the teeth geometry and hair texture more accurately.

Ls ≈ Ienv · IBRDF = (
1

Z

Z∑
z=1

Li(ωz))

· ( 1
Z

Z∑
z=1

DFH · n · ωz
4(n · ωo)(n · ωz)pdf(ωz, ωo)

) .

(17)

Here, pdf(ωm, ωo) is the probability density function re-
lated to D. Both components are precomputed and stored:
Ienv as a multi-resolution mipmap for different roughness
levels and IBRDF , as a lookup table (LUT) based on rough-
ness and the dot product of the normal and observation di-
rection, n · ωo.

C. Further Experiments
C.1. Rendering Speed
Despite the additional computational load introduced by
the deformation and appearance models, our method still
achieves real-time rendering speeds. To provide a reference,
we test the rendering speed on the INSTA dataset using
a single NVIDIA 3090 GPU. Each trained avatar contains
about 75K Gaussian points. We set the rendering resolution
to 512×512 and render 500 images to calculate the average
speed. HRAvatar achieves an average speed of about 155
FPS, with the encoder extracting parameters at about 179
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Method INSTA dataset HDTF dataset self-captured dataset
PSNR↑ MAE∗↓ SSIM↑ LPIPS↓ PSNR↑ MAE∗↓ SSIM↑ LPIPS↓ PSNR↑ MAE∗↓ SSIM↑ LPIPS↓

FLARE 26.80 1.433 0.9063 0.0816 25.55 2.193 0.8479 0.1183 25.82 1.715 0.8576 0.1230
HRAvatar (Ours) 30.36 0.845 0.9482 0.0569 28.55 1.373 0.9089 0.0825 28.97 1.123 0.9054 0.1059

Table 4. Average quantitative results on the INSTA, HDTF, and self-captured datasets. Our method outperforms FLARE in PSNR, MAE∗

(MAE × 102), SSIM, and LPIPS metrics.

albedo (LMSE ↓) normal (cosine similarity ↑)

FLARE 0.0665 0.8424
Ours 0.0557 0.9093

Table 5. Albedo and normal evaluation on the HDTF Dataset.

FPS. Similarly, when relighting with a new environment
map, we measured a rendering speed of approximately 155
FPS under the same setup, ensuring real-time performance.

C.2. Comparison with FLARE

Since both FLARE [2] and our method can perform monoc-
ular 3D head reconstruction and relighting, we conduct a
further comparison.

Self-reenactment. The experimental setup is the same as
in the main paper, with quantitative results shown in Tab. 4
and qualitative results in Fig. 8. Our method outperforms
FLARE in both metrics and visual quality, better captur-
ing details of facial expressions, hair textures, and internal
mouth features such as teeth.

Speed. Under the same setup, we test FLARE’s average
rendering speed on the INSTA dataset, which is approxi-
mately 35 FPS. In contrast, our method achieves a rendering
speed of about 4.5× higher.

Disentanglement and geometric. Directly evaluating ma-
terial disentanglement is challenging due to the scarcity of
publicly available real or synthetic face video datasets. As
an alternative, we employ SwitchLight [33] to extract image
albedo as pseudo-ground truth for evaluation. We compare
against FLARE using LMSE (Local Mean Squared Error)
[27] as the evaluation metric. Results are in Tab. 5. Rough-
ness and reflectance are excluded due to varying definitions
and usage across shading models.

Normals are commonly used to assess reconstructed 3D
geometry. To quantify this, since we lack ground truth nor-
mals, we use the SOTA single-image geometry estimation
method GeoWizard [22], to estimate normals from the im-
ages as pseudo-ground truth. We use the cosine similarity
of normals as the evaluation metric, as shown in Tab. 5.

The qualitative comparison of normals and decoupling
results is shown in Fig. 4 of the main paper.

Source actor Full (Ours) Without ℒ𝑗𝑗𝑗𝑗𝑗𝑗

Figure 9. Ablation result on Ljaw. Without the jaw pose regu-
larization loss, the avatar exhibits mouth distortion during cross-
reenactment.

C.3. Ablation Of Jaw Pose Regularization Loss
Without the jaw pose regularization loss, Ljaw, the trained
encoder may extract jaw poses that deviate from the normal
distribution. This can lead to incorrect mouth motion dur-
ing cross-reenactment. As shown in Fig. 9, removing Ljaw
results in mouth distortion, while including this loss effec-
tively prevents the issue.

C.4. Complete Quantitative Results
We present the complete quantitative results of self-
reenactment for each subject on the INSTA, HDTF, and
self-captured datasets in Tab. 6 and Tab. 7. As shown,
HRAvatar achieves superior performance for most subjects,
demonstrating the robustness of our method.

D. Applications
D.1. Relighting
We show the relighting results of the head illuminated by
rotating environment maps in Fig. 10. For each map, we
extract the corresponding irradiance and prefiltered maps,
applying them in the shading process (Sec. 3.3). HRAvatar
achieves real-time rendering speed during relighting

For convenience during relighting, we use off-the-shelf
tools to precompute the irradiance map and pre-filtered en-
vironment map from the environment map. Specifically, we
use CmftStudio, a tool commonly used in real-time render-
ing pipelines to process HDR images for image-based light-
ing. With CmftStudio, we extract the original environment
map with a resolution of 1024× 512 into an irradiance map
of 512 × 256 and a pre-filtered environment map with 7
mipmaps, ranging from 1024× 512 to 16× 8.
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INSTA dataset
bala biden justin malte 1 marcel nf 01 nf 03 obama person0004 wojtek 1

PSNR↑

INSTA 29.53 29.92 31.66 27.44 22.99 26.45 28.31 31.21 25.44 31.36
Point-avatar 27.88 27.64 30.40 24.98 24.66 25.25 26.60 28.83 23.29 28.82

FLARE 27.20 28.55 29.10 25.93 22.50 25.97 26.71 28.67 25.53 27.84
Splatting-avatar 32.14 30.42 30.93 27.66 24.34 27.08 27.85 30.64 26.49 29.54

Flash-avatar 30.27 31.25 32.16 27.45 24.85 28.02 28.28 31.46 25.49 32.03
GBS 32.47 32.23 33.10 28.23 26.11 27.59 28.12 31.35 25.16 32.05

HRAvatar (Ours) 33.10 31.70 33.29 29.28 26.58 28.95 29.68 33.24 26.54 31.26

MAE∗↓

INSTA 1.154 0.849 0.642 1.160 2.996 1.705 1.381 0.775 1.594 0.834
Point-avatar 1.386 1.203 0.869 1.596 2.662 1.800 1.583 1.103 2.083 1.042

FLARE 1.342 0.973 0.910 1.470 2.817 1.706 1.602 1.097 1.392 1.020
Splatting-avatar 0.854 0.838 0.783 1.135 2.309 1.533 1.340 0.917 1.376 0.910

Flash-avatar 1.175 0.670 0.610 1.058 2.133 1.326 1.249 0.819 1.589 0.700
GBS 0.747 0.583 0.520 1.010 1.608 1.311 1.162 0.802 1.803 0.655

HRAvatar (Ours) 0.657 0.616 0.498 0.902 1.293 1.133 1.031 0.580 1.070 0.668

SSIM↑

INSTA 0.8896 0.9460 0.9591 0.9159 0.8736 0.8937 0.8676 0.9484 0.8478 0.9452
Point-avatar 0.8658 0.9116 0.9373 0.8853 0.9063 0.8919 0.8807 0.9145 0.8576 0.9192

FLARE 0.8761 0.9347 0.9363 0.8973 0.8892 0.9027 0.8841 0.9199 0.9015 0.9216
Splatting-avatar 0.9272 0.9466 0.9482 0.9243 0.9041 0.9202 0.9113 0.9411 0.9075 0.9400

Flash-avatar 0.8494 0.9614 0.9611 0.9326 0.9086 0.9270 0.9155 0.9493 0.8996 0.9509
GBS 0.9390 0.9658 0.9690 0.9374 0.9217 0.9365 0.9271 0.9476 0.8910 0.9593

HRAvatar (Ours) 0.9473 0.9635 0.9687 0.9429 0.9352 0.9398 0.9334 0.9647 0.9278 0.9590

LPIPS↓

INSTA 0.0992 0.0541 0.0521 0.0731 0.1351 0.1262 0.1286 0.0446 0.1453 0.0540
Point-avatar 0.0829 0.0637 0.0588 0.0758 0.1247 0.1257 0.1143 0.0589 0.1637 0.0576

FLARE 0.0927 0.0513 0.0582 0.0726 0.1266 0.1068 0.0971 0.0595 0.0947 0.0567
Splatting-avatar 0.0865 0.0564 0.0651 0.0749 0.1326 0.1107 0.0966 0.0545 0.1246 0.0602

Flash-avatar 0.1535 0.0299 0.0378 0.0477 0.1069 0.0868 0.0760 0.0376 0.1035 0.0392
GBS 0.0862 0.0433 0.0481 0.0737 0.1219 0.1076 0.0861 0.0564 0.1417 0.0582

HRAvatar (Ours) 0.0451 0.0306 0.0367 0.0476 0.0992 0.0868 0.0649 0.0279 0.0940 0.0358

Table 6. Complete quantitative results of self-reenactment for each subject on the INSTA dataset. HRAvatar achieves better performance
metrics in most cases. Bold marks the best, and underline marks the second.

HDTF dataset self-captured dataset
elijah haaland katie marcia randpaul schako tom veronica s1 s2 s3 s4 s5

PSNR↑

INSTA 25.00 24.94 21.36 24.61 23.50 26.45 29.16 26.45 25.88 25.37 29.33 24.86 24.086
Point-avatar 24.05 25.56 22.51 23.76 26.28 25.44 27.01 26.51 25.35 27.32 28.09 23.56 24.85

FLARE 25.05 25.66 22.10 23.58 26.98 25.05 29.45 26.50 26.26 26.12 28.32 24.07 24.32
Splatting-avatar 26.08 26.31 22.23 25.80 29.25 25.51 30.98 27.14 25.05 28.20 29.54 25.34 24.22

Flash-avatar 26.29 26.46 23.39 26.67 29.05 28.28 31.56 28.95 26.37 27.26 30.59 28.01 25.09
GBS 26.76 28.29 22.74 26.59 29.20 27.88 31.54 29.48 28.15 29.50 31.64 27.48 26.17

HRAvatar (Ours) 28.24 28.91 24.92 27.23 29.70 27.95 31.75 29.71 29.40 30.19 31.40 27.00 26.84

MAE∗↓

INSTA 1.835 2.161 4.179 2.191 2.602 1.936 1.272 2.487 1.877 1.637 1.377 1.841 2.807
Point-avatar 2.058 2.177 3.493 2.423 1.746 2.092 1.683 2.212 1.852 1.312 1.204 1.903 2.210

FLARE 1.813 2.097 3.732 2.580 1.637 2.207 1.204 2.277 1.762 1.540 1.209 1.736 2.328
Splatting-avatar 1.652 1.915 3.841 2.026 1.260 2.200 0.988 2.183 2.093 1.296 1.110 1.565 2.489

Flash-avatar 1.602 2.052 2.922 1.755 1.312 1.519 0.980 1.865 1.909 1.364 1.079 1.251 2.557
GBS 1.406 1.403 3.216 1.659 1.234 1.452 0.901 1.535 1.379 1.022 0.950 1.285 2.018

HRAvatar (Ours) 1.108 1.319 2.283 1.483 1.079 1.384 0.847 1.477 1.142 0.896 0.792 1.117 1.666

SSIM↑

INSTA 0.8808 0.8337 0.7474 0.8290 0.8528 0.8586 0.9143 0.7700 0.8218 0.8659 0.8722 0.8634 0.7431
Point-avatar 0.8631 0.8275 0.7771 0.8160 0.8694 0.8578 0.8634 0.8339 0.8460 0.8763 0.8867 0.8573 0.8117

FLARE 0.8798 0.8426 0.7773 0.8117 0.8773 0.8517 0.9064 0.8364 0.8522 0.8560 0.8878 0.8716 0.8204
Splatting-avatar 0.8952 0.8562 0.7562 0.8477 0.9094 0.8586 0.9321 0.8337 0.8279 0.8775 0.9038 0.8817 0.8031

Flash-avatar 0.8898 0.8146 0.8133 0.8636 0.9040 0.8982 0.9305 0.8170 0.7774 0.8659 0.8967 0.8850 0.7491
GBS 0.9113 0.8924 0.8068 0.8783 0.9110 0.9091 0.9404 0.8826 0.8799 0.9098 0.9188 0.9029 0.8339

HRAvatar (Ours) 0.9335 0.9036 0.8597 0.8961 0.9254 0.9135 0.9446 0.8951 0.9019 0.9232 0.9283 0.9142 0.8596

LPIPS↓

INSTA 0.1005 0.1698 0.2222 0.1586 0.1417 0.1390 0.0729 0.2415 0.1897 0.1583 0.1523 0.1678 0.2483
Point-avatar 0.0886 0.1360 0.1683 0.1200 0.1147 0.1283 0.0981 0.1686 0.1255 0.0942 0.1024 0.1364 0.1623

FLARE 0.0821 0.1255 0.1589 0.1258 0.1040 0.1193 0.0748 0.1559 0.1217 0.1014 0.1088 0.1331 0.1500
Splatting-avatar 0.0902 0.1476 0.1982 0.1385 0.1033 0.1455 0.0664 0.1907 0.1773 0.1271 0.1194 0.1539 0.1972

Flash-avatar 0.0759 0.1595 0.1387 0.0881 0.0829 0.1011 0.0609 0.1688 0.2346 0.0736 0.0901 0.109 0.2208
GBS 0.0875 0.1515 0.1899 0.1289 0.1113 0.1160 0.0679 0.1850 0.1696 0.1198 0.1305 0.1599 0.2004

HRAvatar (Ours) 0.0504 0.0929 0.1208 0.0723 0.0683 0.0846 0.0485 0.12228 0.1063 0.0662 0.0939 0.1153 0.1478

Table 7. Complete quantitative results of self-reenactment for each subject on the HDTF and self-captured dataset. HRAvatar achieves
better performance metrics in most cases.

D.2. Material Editing

By modeling the avatar’s material properties for physical
shading, we can easily edit the avatar’s materials. In Fig. 11,
we show material editing under new lighting conditions by
gradually increasing the base Fresnel reflectance, which en-
hances the metallic effect and reduces diffuse reflection. As

shown, higher reflectance results in stronger specular reflec-
tions, validating the effectiveness of our physically-based
shading model.

D.3. Novel Views Synthesis
Although the 3D avatar is reconstructed from a monocular
video, it can still render novel views. Fig. 12 shows the vi-
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Reconstruct Relighting by rotating light

Figure 10. Relighting visual results. For each environment map, we rotate the lighting to illuminate the head from different directions.

Reconstruct Material Editing with increasing base fresnel reflectance

Figure 11. Visual results of material editing. We gradually increase the avatar’s base Fresnel reflectance under new environment lighting,
enhancing specular reflections. The results align with intuitive expectations, validating the effectiveness of our shading model.
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Reference Reconstruct view Novel views

Figure 12. Visual results of novel view synthesis. In each row, the original view of the reconstructed subject is shown on the left, while the
rendered novel views are on the right. Our method produces high-fidelity novel views with strong 3D consistency.

sual results of our method. As shown, HRAvatar renders
novel views of the head with high 3D consistency and qual-
ity, preserving fine texture details.

E. More Discussion
E.1. Method Comparison
FLARE. Similar to most relighting methods, both FLARE
and our approach use a BRDF reflection model to account
for environmental lighting on head appearance. The key
distinction lies in the 3D representation: FLARE adopts
a mesh-based approach, while we leverage 3D Gaussian
Splatting (3DGS) and extend it with physically-based shad-
ing. We further overcome 3DGS’s limitations in modeling
normals and decoupling highlights from albedo. Moreover,
our improved deformation model further enables higher-
fidelity avatar reconstruction while achieving faster render-
ing compared to FLARE.
3DGS-based. GBS. While both GBS and our method em-
ploy blendshapes to model positional displacements, we
introduce: 1) learnable blend skinning for per-point rota-
tions; 2) end-to-end training of an expression encoder to
enhance tracking; and 3) a novel appearance model for bet-
ter material decomposition and relighting. Other 3DGS-
based. Compared to other existing 3DGS-based monocular
reconstruction methods, HRAvatar introduces a more flexi-
ble deformation method and employs an end-to-end trained
expression encoder for more accurate expression capture,

leading to superior reconstruction quality. Furthermore,
we pioneer realistic, relightable monocular Gaussian head
reconstruction. The main differences are summarized in
Tab. 3.

E.2. Future improvements.
The extra computation from blendshapes, linear skinning,
and shading slows down 3DGS rendering, but offloading
these tasks to the GPU via CUDA could mitigate this. These
challenges present opportunities for future improvement.

While albedo supervision from existing models reduces
coupling to some extent, highlights may still be misat-
tributed to properties like roughness or reflectance. Ideally,
the same region, such as hair or skin, should have consis-
tent material attributes. Introducing semantic information
to guide and constrain material learning is a promising fu-
ture direction.

E.3. Ethical Considerations.
Creating realistic, controllable head avatars raises concerns
about potential violations of portrait rights and privacy. It
may also lead to identity theft and misuse in fraud. We
strongly condemn any unauthorized use of this technology
for illegal purposes. It’s crucial to consider ethical impli-
cations in all applications of our method to prevent harm to
the public.
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